Proprotein convertase

Contents

Discovery of Prohormone Convertases

The phenomenon of prohormone conversion was discovered by Donald F. Steiner while examining the biosynthesis of insulin in 1967.[1] At the same time, while conducting chemical sequencing of β-lipotrophic hormone (βLPH) with sheep pituitary glands Dr. Michel Chretien determined that the sequence of another hormone, Melanocyte-stimulating hormone ( βMSH).[2] This was the chemical evidence, at the level of primary protein sequence that peptide hormones could be found within larger protein molecules. The identity of the responsible enzymes was not clear for decades. In 1984, David Julius, working in the laboratory of Jeremy Thorner, identified the product of the Kex2 gene as responsible for processing of the alpha factor mating pheromone. Robert Fuller, working with Thorner, identified the partial sequence of the Kex2-homologous Furin gene in 1989. In 1990 human Kex2-homologous genes were cloned by the Steiner group, Nabil Seidah and co-workers, Wim J.M. van de Ven and co-workers, Yukio Ikehara and co-workers, Randal Kaufman and co-workers, Gary Thomas and co-workers, and Kazuhisa Nakayama and co-workers.

Furin: a 'classic' example of a pro-protein convertase

One of the most well-known PPCs is Furin. Some of its substrates are: proparathyroid hormone, transforming growth factor beta 1 precursor, proalbumin, pro-beta-secretase, membrane type-1 matrix metalloproteinase, beta subunit of pro-nerve growth factor and von Willebrand factor. A furin-like pro-protein convertase has been implicated in the processing of RGMc (also called hemojuvelin hemojuvelin). Both the Ganz and Rotwein groups demonstrated that furin-like proprotein convertases (PPC) are responsible for conversion of 50 kDa HJV to a 40 kDa protein with a truncated COOH-terminus, at a conserved polybasic RNRR site. This suggests a potential mechanism to generate the soluble forms of HJV/hemojuvelin (s-hemojuvelin) found in the blood of rodents and humans.[3][4]

Biochemical and Structural Characterization of Kex2-Related Prohormone Convertases

Kex2 was first purified and characterized by Charles Brenner and Robert Fuller in 1992. The Kex2 crystal structure was solved by a group led by Dagmar Ringe, Robert Fuller and Gregory Petsko. That of Furin was determined by a group led by Manual Than and Wolfram Bode. The key features of Kex2 and Furin are a subtilisin-related catalytic domain, a specificity pocket that requires the amino acid amino terminal to the scissile bond to be arginine for rapid acylation, and a P-domain carboxy-terminal to the subtilisin domain, which is required for biosynthesis.

PCSK subtypes

To date there are 9 PCSKs with varying functions and tissue distributions.[5] Often, due to similar times of discovery from different groups the same PCSKs have acquired multiple names. In an attempt to alleviate confusion, there is a trend towards using the PCSK prefix with the appropriate number suffix.[6]

current PCSK nomenclature Other common names
PCSK1 PC1, PC3 (new name: PC1/3)
PCSK2 PC2
PCSK3 Furin, Pace, PC1
PCSK4 PC4
PCSK5 PC5, PC6 new name:PC5/6
PCSK6 PACE4
PCSK7 PC7, PC8
PCSK8 Site 1 Protease, S1P,SKI
PCSK9 NARC-1

References

  1. ^ Steiner DF, Cunningham D, Spigelman L, Aten B (August 1967). "Insulin biosynthesis: evidence for a precursor". Science 157 (3789): 697–700. doi:10.1126/science.157.3789.697. PMID 4291105. 
  2. ^ Chrétien M, Li CH (July 1967). "Isolation, purification, and characterization of gamma-lipotropic hormone from sheep pituitary glands". Can. J. Biochem. 45 (7): 1163–74. doi:10.1139/o67-133. PMID 6035976. 
  3. ^ Lin L, Nemeth E, Goodnough JB, Thapa DR, Gabayan V, Ganz T (2008). "Soluble hemojuvelin is released by proprotein convertase-mediated cleavage at a conserved polybasic RNRR site". Blood Cells Mol. Dis. 40 (1): 122–31. doi:10.1016/j.bcmd.2007.06.023. PMC 2211380. PMID 17869549. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2211380. 
  4. ^ Kuninger D, Kuns-Hashimoto R, Nili M, Rotwein P (2008). "Pro-protein convertases control the maturation and processing of the iron-regulatory protein, RGMc/hemojuvelin". BMC Biochem. 9: 9. doi:10.1186/1471-2091-9-9. PMC 2323002. PMID 18384687. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2323002. 
  5. ^ Seidah NG, Chrétien M (November 1999). "Proprotein and prohormone convertases: a family of subtilases generating diverse bioactive polypeptides". Brain Res. 848 (1-2): 45–62. doi:10.1016/S0006-8993(99)01909-5. PMID 10701998. 
  6. ^ Fugère M, Day R (June 2005). "Cutting back on pro-protein convertases: the latest approaches to pharmacological inhibition". Trends Pharmacol. Sci. 26 (6): 294–301. doi:10.1016/j.tips.2005.04.006. PMID 15925704. 

External links